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Abstract

The identi_cation of the piecewise homogeneous thermal conductivity of conductors with unknown location of the
discontinuities is investigated using additional boundary and:or interior measurements of the temperature in heat!~ow
experiments[ A mathematical analysis is performed for the steady!state case\ whilst for the unsteady case a numerical
method based on the boundary element method\ as a direct solution procedure\ combined with an ordinary least!squares
technique subject to bounds on the variables\ is employed for obtaining an inverse numerical solution[ The sensitivity
coe.cients for the unspeci_ed boundary conditions and for interior temperatures are calculated and show the need for
interior measurement information to be imposed[ For a heat conductor presenting a single discontinuity\ it was found
that\ when the number of time measurements is limited then two interior temperature measurements are necessary and
su.cient in order to render a good estimate of the exact solution\ otherwise one may increase the number of time
measurements at a single interior sensor location to render the same result[ Þ 0887 Published by Elsevier Science Ltd[
All rights reserved[

Key words] Inverse coe.cient identi_cation problem^ Discontinuous thermal conductivity^ Boundary element method "BEM#\
Sensitivity coe.cients

0[ Introduction

The aim of this paper is to investigate the identi_cation
of the piecewise homogeneous thermal conductivity of
conductors with unknown location of the discontinuities
using additional boundary and:or interior measurements
of the temperature in transient heat conduction exper!
iments[ This formulation models the presence of {faults|
within conductors which are de_ned herein as dis!
continuity points for the thermal conductivity of the con!
ductors[ Practically\ this formulation models a heat con!
duction experiment in which two or more homogeneous
conductors are butted together and the experiment per!
formed over the whole of the linked material[

The case of unknown fault location\ but with two
known conductivity constant coe.cients\ has been inves!
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tigated analytically in degenerate hypotheses by Cannon
ð0Ł[ The case of unknown piecewise homogeneous con!
ductivity coe.cient\ but with known fault location\ has
been brie~y tested numerically by Carrera and Neuman
ð1Ł[ It appears that the case of the simultaneous deter!
mination of the piecewise homogeneity of the thermal
conductivity and the location of the unknown dis!
continuity is not encountered in the literature and there!
fore this study is aimed at investigating such a situation[
Here we develop solutions to the case where a constant!
rate of heat ~ow is applied to a sample which has a step
change in the conductivity at an unknown position along
its length\ due\ for example to a presence of a modi!
_cation of the type of material representing the conduc!
tor[ The lack of knowledge of these quantities is com!
pensated for by measuring in time boundary and:or
internal values of the temperature using thermocouples
penetrating the material[

A simple one!dimensional\ transient mathematical for!
mulation of the problem under investigation is intro!
duced in Section 1 for a temperature build!up and decay\
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transient\ heat conduction experiment[ Then the steady!
state mathematical analysis is performed in Section 2 in
order to gain insight into the uniqueness features of the
inverse problem and to argue the need for investigating
the transient situation using the numerical methods and
analysis which are developed in the subsequent sections[

In Sections 3 and 4 the boundary element method
"BEM# is combined with an ordinary\ nonlinear least!
squares method subject to physically sound constraints\
for obtaining an inverse numerical solution[ The BEM
does not require any domain discretisation and therefore
it reduces by one the degree of the dimensionality of the
problem[ Consequently\ the BEM does not require any
moving meshes\ needed when using iteratively domain
discretisation methods\ e[g[ _nite!di}erence method
"FDM# or the _nite element method "FEM#\ for the
determination of the spatial fault location[ Furthermore\
unlike the FDM and FEM\ there is no need of interp!
olation onto grid cells when using the BEM for imposing
the measured internal temperature values[

Finally\ in Section 5 the accuracy of the BEM as a
direct problem solution procedure is compared with that
obtained using a FDM[ Also\ a sensitivity coe.cient
analysis shows\ prior to inversion\ the need for internal
temperature measurements[ The e}ects on the uniqueness
of the numerical solution of the number and location of
the sensors recording time measurements of the tem!
perature are thoroughly investigated[ The numerical
results are discussed and compared with their exact values
for numerically simulated input data\ both with and with!
out noise included[

1[ Mathematical formulation

The governing heat conduction equation is given by

C
1T
1t

"x\ t# �
1

1x 0k"x#
1T
1x

"x\ t#1\
9 ³ x ³ L\ 9 ³ t ³ � "0#

where T is the temperature\ C is the volumetric heat
capacity which is assumed to be constant\ k"x# is the
thermal conductivity and L is the length of the heat
conductor[

For composite homogeneous conductors the thermal
conductivity is piecewise constant\ i[e[

k"x# � ki for xs
i−0 ¾ x ¾ xs

i \ i � 0\ Ns "1#

where Ns is the number of zonations "layers# of homo!
geneous materials butted together\ xs

9 � 9\ xs
Ns

� L and
xs

i $"9\ L# for i � 0\"Ns−0#\ are the unknown dis!
continuity locations[

The boundary conditions are derived for a heat ~ow
test similar to those of Garnier et al[ ð2Ł and Dowding

et al[ ð3Ł and is shown schematically in Fig[ 0[ In this
experiment an in~ow of heat is applied using a heater at
the entrance of an upstream block of material which is
in thermal contact with the heat conductor sample and
the induced temperature is measured with a di}erential
transducer connected between the two extreme faces of
the sample[ After the transients have past\ or even before
that\ the heater may be switched o}[

At the start of the experiment\ the temperature of the
sample is constant and is set zero\ i[e[

T"x\ 9# � 9 for 9 ¾ x ¾ L[ "2#

The exit face of the sample\ x � L\ is bu}ered at a con!
stant temperature\ set to zero\ i[e[

T"L\ t# � 9 for 9 ³ t ³ �[ "3#

At the entrance face of the sample\ x � 9\ conservation
of heat at the sampleÐblock interface is applied\ resulting
in a boundary condition of the fourth!kind\ namely\

Su

1T
1t

"9\ t# � k"9#A
1T
1x

"9\ t#¦Qu\ 9 ³ t ³ � "4#

where Su � CuVu is the heat capacity of the upstream
block of material with volume Vu and volumetric heat
capacity Cu\ A is the cross!sectional area of the sample
and Qu is the constant in~ow rate of heat at the entrance
of the upstream block which is zero when the heater is
o}[

At the interfaces x � xs
i for i � 0\"Ns−0#\ the con!

tinuity of the temperature and the heat ~ux are applied\
namely\

limxWxs
i
T"x\ t# � limxwxs

i
T"x\ t#\ 9 ³ t ³ � "5#

limxWxs
i
ki

1T
1x

T"x\ t# � limxwxs
i
ki¦0

1T
1x

"x\ t#\

9 ³ t ³ �[ "6#

The inverse problem requires\ in addition to the tem!
perature solution T"x\ t#\ the determination of the piece!
wise homogeneous values ki for i � 0\Ns\ and the
unknown fault locations xs

i for i � 0\"Ns−0#[ The lack of
information is compensated for by additional tem!
perature measurements at Nw sensor locations xi within
the medium ð9\ L#\ recorded in time at NT prescribed
instants t?j

T"xi\ t?j# � ðT"xi\ t?j#Ł "e# � measured\

i � 0\ Nw\ j � 0\ NT[ "7#

2[ Steady!state analysis

The steady!state solution of eqns "0#Ð"6# is given by

T"x\ �# �
Qu

A $−
x
ki

¦
L
kNs

¦ s

Ns−0

j�i

xs
j 0

0
kj

−
0

kj¦01%\
xs

i−0 ¾ x ¾ xs
i \ i � 0\ Ns "8#
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Fig[ 0[ Schematic diagram showing the experiment arrangement of a heat ~ow test[

from which it can be seen that the boundary measurement
of the temperature at x � 9\ say T"9\ �# � T�\ and one
and only one measurement of the steady!state tem!
perature at a single location yi within each layer
"xs

i−0\ xs
i #\ say T"yi\ �# � Ti for i � 0\Ns\ can be used to

provided "Ns¦0# possibly linearly independent equa!
tions[ However\ the number of unknowns in equation
"8# is "1Ns−0# and hence the steady!state mathematical
analysis can be solely used only if Ns¦0 × 1Ns−0\ or
Ns $ "0\ 1#[ If Ns � 0 then

k0 �
Quy0

A"T�−T0#
\ L �

T�y0

T�−T0

\

T"x\ �# � T�−
x"T�−T0#

y0

"09#

whilst\ if Ns � 1 then

k0 �
Quy0

A"T�−T0#
\ k1 �

Qu"L−y1#
AT1

\

xs
0 �

"T�−T1#Ly0−T1T�y0

"T�−T0#"L−y1#−T1y0

"00#

T"x\�# �

F

H

H

g

H

H

f

0
y0"L−y1#

ðT1y0"L−xs
0#¦"T�−T0#"L−T1#"xs

0−x#Ł\

9¾x¾xs
0

"L−x#T1

L−y1

\ xs
0 ¾x¾L[

"01#

Then\ we can retrieve uniquely both the conductivity and
the length of a homogeneous conductor from only one
boundary\ at x � 9\ and one internal\ x � y0\ steady!
state measurement of the temperature\ whilst as given by
equations "00# and "01# we can retrieve uniquely both the
two conductivities and the location of the discontinuity
from only one boundary\ at x � 9\ and two internal\
x � � "y0\ y1#\ static temperature measurements[
However\ there are possible drawbacks when using the
steady!state approach\ namely]

"i# the steady!state may not exist\ or long times\ which
are practically expensive\ may be required to achieve
the steady!state^

"ii# only one or no internal measurement of the tem!
perature may be available^

"iii# the transient temperature distribution is also
requested^

"iv# Ns × 1[

Therefore\ in order to deal with such possible practical
di.culties the transient case needs to be considered[ For
Ns � 0\ an analytical solution has recently been given by
Esaki et al[ ð4Ł\ but for composite conductors\ i[e[ Ns × 0\
there is as yet no analytical study available and therefore
both the direct and inverse problems "0#Ð"6# are inves!
tigated numerically as described in the next sections[

3[ Boundary element solution of the direct problem

The _rst step in the inverse analysis which will be _nally
undertaken is the development of the corresponding
direct solution for the problem\ i[e[ equation "0#Ð"6#\
when ki for i � 0\Ns\ and xs

i for i � 0\"Ns−0#\ are
assumed to be known[

In this study\ the numerical method adopted for solv!
ing the direct initial boundary value problem is the BEM[
If\

a"x# � ai � ki:C for xs
i−0 ¾ x ¾ xs

i \ i � 0\ Ns "02#

is de_ned to be the piecewise constant thermal di}usivity
of the medium\ then the governing heat conduction equa!
tion "0#\ in which the thermal di}usivity is given by equa!
tion "02# over each zonation ðxs

i−0\ xs
i Ł\ possesses a fun!

damental solution\ namely\

FSi"x\ t^ j\ t# �
H"t−t#

"3pai"t−t##0:1
exp 0−

"x−j#1

3ai"t−t#1\
xs

i−0 ¾ x\ j ¾ xs
i \ t\ t × 9\ i � 0\ Ns "03#
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where H is the Heaviside function[ The use of the fun!
damental solution given by equation "03# enables us to
reformulate the partial di}erential equation "0# over each
zonation ðxs

i−0\ xs
i Ł as a boundary integral equation\ as

follows]

h"x#T"x\ t# � g
tf

9

aiT?"xs
i−0\ t#FSi"x\ t^ xs

i−0\ t# dt

¦g
tf

9

aiT?"xs
i \ t#FSi"x\ t^ xs

i \ t# dt

−g
tf

9

aiT"xs
i−0\ t#FS?i"x\ t^ xs

i−0\ t# dt

−g
tf

9

aiT"xs
i \ t#FS?i"x\ t^ xs

i \ t# dt

¦g
xs

i

xs
i−0

T9"y#FSi"x\ t^ y\ 9# dy\ "x\ t# $ ðxs
i−0\ xs

i Ł×"9\ tfŁ

"04#

where tf is a _nal time of interest over which duration the
experiment is performed\ h"x# is a coe.cient function
equal to unity if x $"xs

i−0\ xs
i # and 9[4 if x $ "xs

i−0\ xs
i#\ the

prime denotes the di}erentiation with respect to the out!
ward normal n at the boundaries x $ "xs

i−0\ xs
i# and T9"y#

is the initial temperature which is zero\ see equation "2#\
if the heater is on and which is equal to T"y\ tf#\ "obtained
by _rst solving the heater!on ~ow test#\ when the heater
is switched o}[ Therefore\ when the heater is on\ the
BEM requires the discretisation of the boundary space
solution domain\ x $ "9\ 0#\ only\ and it fully reduces the
dimensionality of the problem by one[ When the heater
is o} the BEM requires an additional solution space
domain discretisation at t � tf\ but the line integral
involved in equation "04# can easily be evaluated numeri!
cally without much computational cost[

The BEM discretisation of the boundary integral equa!
tion "04# is performed by subdividing the time interval
ð9\ tfŁ into N equal time intervals ðtj−0\ tjŁ\ for j � 0\N\
and\ for simplicity\ we assume that the boundary tem!
perature and its normal derivative are constant over each
time step and take their values at the midpoint\
t¹j �"tj−0¦tj#:1\ namely\

T"xs
i \ t#3 ¹ T"xs

i \ t¹j#3 �"Ti
j#3\

T?"xs
i \ t#3 ¹ T?"xs

i \ t¹j#3 �"T?ij#3\

t $ ðtj−0\ tjŁ "05#

where 3 denotes the limits of the functions involved
from the left and right at the interface x � xs

i for
i � 0\"Ns−0#\ respectively[ When the heater is switched
o} we also need the discretisation of the space intervals
ðxs

i−0\ xs
i Ł into Ni

9 cells\ namely\ ðyi
k−0\ yi

kŁ\ for k � 0\ Ni
9\

i � 0\Ns\ and this is achieved using a constant space cell
approximation at y � y¹i

k �"yi
k−0¦yi

k#:1\ namely\

T9"y# � T"y\ tf# ¹ T"y¹i
k\ tf# � Ti

9k\

y $ ðyi
k−0\ yi

kŁ\ k � 0\ Ni
9\ i � 0\ Ns[ "06#

Based on the constant BEM approximations as given by
equations "05# and "06#\ equation "04# becomes

h"x#T"x\ t# � s
N

j�0 $aiT?i−0
j g

tj

tj−0

FSi"x\ t^ xs
i−0\ t# dt

¦aiT?ij g
tj

tj−0

FSi"x\ t^ xs
i \ t# dt

−aiT
i−0
j g

tj

tj−0

FS?i"x\ t^ xs
i−0\ t# dt

−aiT
i
j g

tj

tj−0

FS?i"x\ t^ xs
i \ t#% dt

¦ s

Ni
9

k�0

Ti
9k g

yi
k

yi
k−0

FSi"x\ t^ y\ 9# dy\

"x\ t# $ ðxs
i−0\ xs

i Ł×"9\ tfŁ\ i � 0\ Ns "07#

where\ for simplicity\ the symbol 3 has been dropped[
Letting x in equation "07# tend to the interface locations
xs

i for i � 9\Ns\ we obtain a system of linear equations
involving boundary and interface unknowns only[ This
system of equations is completed with the boundary con!
ditions "3#Ð"6#\ which in discretised form yield\

TNs
j � 9\ j � 0\ N "08#

Su 0
T9

0−T9"9#
tf:"N# 1¦k0AT?90 � Qu "19#

Su 0
T9

j¦0−T9
j−0

1tf:N 1¦k0AT?9j � Qu\ j � 1\"N−0# "10#

Su 0
T9

N−T9
N−0

tf:N 1¦k0AT?9N � Qu "11#

"Ti
j#− �"Ti

j#¦\

ki"T?ij#− � −ki¦0"T?ij#¦\

i � 0\"Ns−0# "12#

where T9"9# � 9 if the heater is on and T9"9# � T9
N "an

already calculated value# if the heater is o}[

4[ The least!squares minimization technique

In the inverse problem given by equations "0#Ð"6# in
which k �"ki# for i � 0\Ns\ and xs �"xs

i # for
i � 0\"Ns−0#\ are unknown\ additional temperature
measurements are imposed[ We can then compare the
measured\ "e#\ and the computed\ "c#\ data in equation
"7# in the least!squares sense
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LS"k\ xs# � s

Nw

i�0

s

NT

j�0

li =T"xi\ t?j^ k\ xs# "e#−T"xi\ t?j^ k\ xs# "c# =1

"13#

where the parameters li are set to be 9 or 0 according to
whether we measure in time at the space locations\ x � xi\
the multiplying quantities\ i[e[ T"xi\ t?j^ k\ xs# "e#\ or not[
The least!squares functional "13#\ is minimized using the
NAG routine E93UCF over the set

M � ""k\ xs# = buk × k × blk\ bus × xs × bls\

ki � kj\ [i � j# "14#

where buk\ bus\ blk and bls are vectors of upper and lower
bounds\ respectively\ to which the physical variables are
subjected[

5[ Numerical results and discussion

The numerical analysis performed in the previous sec!
tions has been tested for a composite heat conductor
formed from silver butted together with aluminum\ so
presenting a single fault\ i[e[ Ns � 1\ whilst the case of
multiple faults situation is deferred to a future study[ This
type of composite material has been investigated since
silver and aluminum have approximately the same volu!
metric heat capacity C � 1[35 J cm−2 >C−0[ The whole
linked material has a length of L � 0[05 cm and a cross!
sectional area of A � 1[64 cm1[ An in~ow rate of heat of
Qu � 093 W is applied for tf ¼ 22[6 min at the entrance
of an upstream block of material with heat capacity
Su � 092 W min >C−0[ The single fault is located at
xs

0 �"19L:24# ¼ 9[551 cm and the piecewise constant
thermal conductivity is given by

k"x# � 6
k0 � 3[089 W cm−0 >C−0\ 9 ¾ x ³ xs

0

k1 � 1[984 W cm−0 >C−0\ xs
0 ³ x ¾ L

[

"15#

The BEM discretisation of the problem under inves!
tigation has been performed using N � 34 time elements
and\ when the heater is o}\ N0

9 � N1
9 � 5 cells[

For the direct problem\ Fig[ 1 shows the numerical
BEM temperature build!up and decay curves\ as a func!
tion of time\ at various space locations within the
medium\ or on the boundary x � 9[ From Fig[ 1 it can
be seen that the maximum temperature values are
obtained at the active thermal boundary x � 9 and the
temperature decays monotonically to zero as we
approach the boundary x � L where a zero temperature
condition\ as given by equation "3#\ is prescribed[ Except
for the temperature curves at the unknown fault location
x � xs

0 �"19L:24#\ the temperature curves from Fig[ 1
calculated at some particular prescribed instants t?j for
j � 0\NT\ will be considered as exact input data\ as given
by equation "7#\ in the inverse analysis[

As no analytical solution is available for the problem
under investigation the accuracy of the BEM utilised for
solving the direct problem\ as described in Section 3\
is compared with a weighted average Galerkin _nite!
di}erence method "FDM#\ similar to that used by Flach
and Ozisik ð5Ł and Huang and Ozisik ð6Ł\ but with con!
tinuous spacewise varying thermal properties and Neu!
mann boundary conditions[ Since the lines of constant
temperature obtained throughout the medium were indis!
tinguishable for the two numerical approaches\ it can be
argued that the FDM and the BEM perform equally well
as numerical solutions for the direct problem[

Prior to investigating the inverse problem\ it is useful
to calculate the sensitivity coe.cients which are the _rst
derivatives of the temperature at sensor measurement
locations xi for i � 0\Nw\ with respect to the unknowns\
namely\ ki for i � 0\Ns\ and xs

i for i � 0\"Ns−0#\ as a
function of time[ They provide indicators of how well!
designed is the experiment and\ in general\ the sensitivity
coe.cients are desired to be large and uncorrelated\ i[e[
linearly independent\ see Beck and Arnold ð7Ł[ A sense
of the magnitude of the sensitivity coe.cients is gained
through normalisation by multiplying them with their
corresponding unknown di}erentiation variable\ result!
ing in units of temperature for the normalised sensitivity
coe.cients[ The degree of uncorrelation of these
coe.cients can then be illustrated by the departure of
their ratios from a constant value[ Based on this criterion
we can determine the optimal space locations and time
instant measurements to be imposed or recorded in equa!
tion "7#[

For Ns � 1\ by calculating the ratios between the sen!
sitivity coe.cients\ namely

R0"x\ t# � xs
0

1T

1xs
0
> k0

1T
1k0

\

R1"x\ t# � k0

1T
1k0 > k1

1T
1k1

\ R2"x\ t# � k1

1T
1k1 > xs

0

1T

1xs
0

"16#
it was observed that the sensitivity coe.cients at x � 9
possess two degrees of correlation\ namely\
R0"9\ t# ¼ 0^ R1"9\ t# ¼ 1

2
^ R2"9\ t# ¼ 2

1
[ "17#

Therefore\ we may conclude that only one of the three
unknowns xs

0\ k0 or k1\ assuming the other two are _xed
and known\ can be identi_ed from only temperature
measurements imposed in equation "7#\ at the boundary
x � 9[ Based on this sensitivity analysis\ which cor!
responds to information supplied only by boundary tem!
perature measurements\ it is concluded that interior
measurements are necessary in order to reduce the non!
uniqueness of the ill!posed problem[

The ratios Ri"x\ t# for i $ "0\ 1\ 2#\ between the sen!
sitivity coe.cients at the interior locations x �"xs

0:1#
and x �"2xs

0:1# showed single degrees of correlations\
namely\
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Fig[ 1[ The temperature T"x\ t# as a function of time\ at the space locations\ x $ "9\ xs
0:1\ xs

0\ 2xs
0:1# � "9\ 09L:24\ 19L:24\ 29L:24# ¼

"9\ 9[220\ 9[551\ 9[883#cm\ obtained using the BEM for the direct problem[

R2 0
xs

0

1
\ t1¼

2
1
^ R0 0

2xs
0

1
\ t1¼ 0[ "18#

Therefore\ we conclude that we cannot identify sim!
ultaneously both xs

0 and k1 from only temperature
measurements imposed in equation "7# at x �"xs

0:1#\
whilst from only temperature measurements imposed in
equation "7# at x �"2xs

0:1# we cannot identify sim!
ultaneously both xs

0 and k0[ Therefore\ in such situations\
in general\ one needs to _x one of the unknowns[

So far\ the sensitivity analysis performed in this sub!
section highlights the highly ill!posed non!unique solu!
tion problem that we have formulated when the number
of spatial observations assumed available is restricted to
Nw � 0[ Finally\ it should be mentioned that the same
sensitivity analysis has also been performed for the
boundary heat ~ux but the same two degrees of cor!
relation between the corresponding ~ux sensitivity
coe.cients\ similar to those given by equation "17#\ have
been obtained[ In addition\ the sensitivity coe.cients for
the boundary heat ~ux are small\ of O "09−2# W cm−1\
and therefore they are not presented in this study[

In the inverse analysis of solving equations "0#Ð"7# for
a material containing a single discontinuity\ i[e[ Ns � 1\
the number of coe.cient unknowns is equal to
"1Ns−0# � 2\ and in order to investigate the most limited
time recording information\ the number of time measure!
ments at each sensor location was initially taken to be
NT � 2[ The time measurements t?j at each of the
locations xi $ "9\ xs

0:1\ 2xs
0:1# � "9\ 9[220\ 9[883# cm\

were selected as

"t?0\ t?1\ t?2# �

F

G

G

g

G

G

f

"t¹09\ t¹10\ t¹44# �"6[005\ 04[245\ 39[338# min\ x � 9

"t¹4\ t¹09\ t¹04# �"2[260\ 6[005\ 09[750# min\ x �
xs

0

1

"t¹6\ t¹05\ t¹14# �"3[758\ 00[509\ 07[241# min\ x �
2xs

0

1

[

"29#

It should be noted that this selection of the time measure!
ments can be regarded as optimal mainly for exact or
errors in the data of the same order as the computer
machine precision\ with the choice based on investigating
closely the approximative sign ¼ in equation "18# which
gives the largest departure of the ratios of the sensitivity
coe.cients from a constant function[ When realistic
noisy data is considered\ and the number of spatial
locations is limited to Nw � 0\ there is no optimal decision
with respect to a possible meaningful criterion to be made
and the earlier conclusions on non!identi_ability of the
ill!posed problem when Nw � 0 apply[ However\ it may
be that when gathering the information at the time
measurements given by equation "29#\ when Nw $ "1\ 2#\
then an accurate and stable numerical estimate of the
exact solution can be achieved[

Tables 0 and 1 show the recovery of the unknowns
xs

0 � 9[551 cm and k0 and k1 given by equation "15#\ when
solving the constraint minimization problem given by
equations "13# and "14#\ when exact and 0) pressure
measurements are inputted\ respectively[ In these tables
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Table 0
The retrieval of a piecewise homogeneous thermal conductivity
and its discontinuity location for exact data when Nw $ "0\ 1\ 2#
and NT � 2

BEM xs
0 k0 k1

Exact 9[551 3[089 1[984
l0 � 0 9[673 1[817 1[817
l1 � 0 9[484 3[072 1[108
l2 � 0 9[458 3[609 0[886
l0 � l1 � 0 9[517 3[078 1[988
l1 � l2 � 0 9[551 3[089 1[984
l0 � l2 � 0 9[609 2[893 1[983
l0 � l1 � l2 � 0 9[557 3[043 1[975

Table 1
The retrieval of a piecewise homogeneous thermal conductivity
and its discontinuity location for p) � 0) noisy data when
Nw $ "0\ 1\ 2# and NT � 2

BEM xs
0 k0 k1

Exact 9[551 3[089 1[984
l0 � 0 9[654 1[713 1[712
l1 � 0 9[573 3[162 1[973
l2 � 0 9[456 3[609 0[845
l0 � l1 � 0 9[621 3[092 1[021
l1 � l2 � 0 9[540 3[218 1[091
l0 � l2 � 0 9[690 2[717 1[909
l0 � l1 � l2 � 0 9[548 3[979 1[993

when the variables li for i $ "0\ 1\ 2#\ are not speci_ed\
they are set up to be zero[

In de_ning the set of constraints M given by equation
"14#\ the upper and lower physical bounds on the vari!
ables were taken to be

buk �"09\ 09# W cm−0 >C−0\

bus �"0[02# cm\

blk �"09−3\ 09−3# W cm−0 >C−0\

bls �"9[2# cm "20#

and the initial guesses used for initiating the NAG routine
E93UCF were given by

xs
0� �

L
1

� 9[47 cm\

k�0 � 3 W cm−0 >C−0\

k�1 � 1 W cm−0 >C−0[ "21#

It should be noted that other initial guesses\ such as

xs
0� �

L
1

� 9[47 cm\

k�0 � 09−1 W cm−0 >C−0\

k�1 � 09−2 W cm−0 >C−0 "22#

have also been considered[ For all the cases tested in
Tables 0 and 1\ whether an optimal minimum for the
least!squares functional LS\ given by equation "13#\ is
attained\ or if the current point solution cannot be
improved since the di}erences obtained between suc!
cessive iterations decrease extremely slowly\ the number
of iterations needed for such requirements was found to
be similar when using either of the initial guesses given
by equation "21# or "22#[ However\ in the case Nw � 0
the numerical estimates of the exact solution may di}er
signi_cantly when di}erent initial guesses are adopted
and hence show the non!identi_ability of the ill!posed
problem that one has formulated[ For exact data\ the
numerical results presented in Table 0 show consistency
with the conclusions from the sensitivity analysis per!
formed earlier[ From Table 0 it can be seen that when
Nw � 0 and x0 � 9\ i[e[ l0 � 0\ then only NT � 2 time
temperature measurements at the boundary x � 9 cannot
identify any of the unknowns[ In addition\ the case l0 � 0
shows that k0 ¼ k1 and therefore in such a situation a
homogeneous thermal conductivity given by k ¼ 1[817
W cm−0 >C−0 may also be considered as a solution for a
conductor which initially had a piecewise homogeneous
thermal conductivity given by equation "15#[ When
Nw � 0 and x0 �"xs

0:1#\ i[e[ l1 � 0\ then the NT � 2 time
temperature measurements at the corresponding interior
location can be used to identify only the value of k0\
whilst when x0 �"2xs

0:1#\ i[e[ l2 � 0\ only the value of k1\
can be identi_ed\ see also equation "18#[ However\ as
will be shown later\ by increasing the number of time
measurements NT to approximately seven or eight and
imposing conditions at the single corresponding interior
spatial location when Nw � 0\ then with the heater both
on and o} it may be possible to produce better estimates
of the unknowns[ Finally\ from Table 0 it can be seen
that when Nw $ "1\ 2#\ then the NT � 2 time temperature
measurements at each of the corresponding space
locations produce good estimates of the exact solution\
with the best accuracy obtained for Nw � 1 interior spa!
tial locations at x0 �"xs

0:1# and x1 �"2xs
0:1#\ i[e[ in the

case l1 � l2 � 0[ Overall\ from Table 0 it can be con!
cluded that\ for exact data\ when the number of time
measurements at a sensor location is limited to
NT � 2 � 1Ns−0\ then temperature measurements at
Nw � 1 space locations are needed to be imposed in equa!
tion "7# for identi_ability and a good retrieval of the
unknowns[

The conclusions obtained from Table 0 are con_rmed
in Table 1 where p) � 0) noisy data is inputted in
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equation "7#[ This noisy data is generated by perturbing
the solution of the direct problem by random Gaussian
distributed variables with mean zero and standard devi!
ations sij\ namely\

T"xi\ t?j# "e# � T"xi\ t?j#¦oij\ oij � G94DDF"9\ sij#\

sij �
p

099
×T"xi\ t?j#\ i � 0\ Nw\ j � 0\ NT "23#

where G94DDF"m\ s# is a NAG routine which is designed
to generate random Gaussian variables with mean m and
standard deviation s[ Table 1 shows good estimates of
the exact solution when the inverse problem is ident!
i_able\ i[e[ when Nw − 1[ In such situations\ the relative
errors between the exact and numerically obtained values
are reasonably small and comparable to the amount of
noise p)[ However\ as for exact data in Table 0\ it should
be noted that the best stable estimate of the solution is
obtained in the case l1 � l2 � 0 corresponding to Nw � 1
interior thermocouples located at x0 �"xs

0:1# and
x1 �"2xs

0:1#[ The amount of redundant noisy data which
may have been unwantedly included in the overall num!
ber of imposed conditions by increasing to
Nw×NT $ "5\ 8#\ when Nw $ "1\ 2#\ is negligible in com!
parison with the strong information supplied for iden!
ti_ability and the less severeness of the ill!posed problem[

Next\ for both exact and noisy data\ we investigate the
e}ect on the numerical inverse solution of increasing the
number of time measurements\ NT[ It is noted at this
stage that for exact data by increasing NT we expect to
improve on the resolution of the numerical solution as
more exact information is imposed[ However\ for noisy
data the situation may be di}erent as more noisy redun!
dant data might be unwantedly imposed in equation "7#[
The time measurements were recorded at equidistant
BEM discretisation sampling time nodes\ namely\

t?j $ 6
t¹4j\ j�0\NT\ "if the heater is on#\

"t¹4j\ t¹N¦4j#\ j�0\NT\ "if the heater is on and off#[

"24#

Table 2 shows the recovery of the unknowns xs
0\ k0 and

k1\ when exact and 0) noisy measurements of the tem!
perature at the single location x0 �"xs

0:1#\ i[e[ l1 � 0\ are
recorded at various NT $ "2\ 3\ 4\ 5\ 6\ 7# times when the
heater is on\ and on and o}[ Initially\ as predicted by
equation "17#\ it was found that increasing NT at the
single boundary location x � 9 did not improve on the
non!uniqueness of the inverse solution as previously
obtained for the case l0 � 0 in Tables 0 and 1[ Therefore\
Table 2 includes the results obtained when only interior
temperature measurements are considered\ i[e[ l0 � 9[ As
expected from equation "18#\ in Table 2 only the value of
k0 can be retrieved very accurately[ However\ there is a
signi_cant improvement in the prediction of the values
of xs

0 and k1 when the number of time measurements
increases from NT � 2 to the interval 3Ð7[ When the

heater is on\ it can be seen that there is little di}erence
between the results obtained when NT increases from 3Ð
7 and\ therefore\ in this case it can be concluded that
NT � 3 is the optimal minimal number of time measure!
ments[ Better estimates of the exact values can be
obtained by recording temperature measurements in time
when the heater is both on and o}[ In this case\ it can be
seen that this measurement information improves sig!
ni_cantly the results with the best accuracy obtained
when NT increases to about seven or eight time measure!
ments[ Overall from Table 2 it can be concluded that the
measurement at the single location x0 �"xs

0:1# can be
used successfully for retrieving the unknowns provided
that about NT $ "6\ 7# time measurements recorded when
the heater is both on and o} are imposed[ Furthermore\
the inclusion of noise in this data did not produce any
large or oscillatory deviations of the numerical results
from their exact values showing that the numerical solu!
tion is also stable[

The conclusions obtained from Table 2 are partially
validated in Table 3 in which the recovery of the
unknowns is shown when the single sensor\ recording
temperature measurements with or without noise\ is
located at x0 �"2xs

i :1#\ i[e[ l2 � 0\ and various numbers
of time measurements NT are investigated[ As expected
from equation "18#\ we cannot identify both xs

0 and k0

even when increasing the number NT of time measure!
ments at the single sensor location x �"2xs

0:1#[ This con!
clusion is in contrast with that obtained in Table 2\ but
is somewhat expected as this location x �"2xs

0:1# is closer
to the boundary x � L where a zero temperature con!
dition is prescribed\ see equation "3#\ and the ~ow is not
as developed as at the location x �"xs

0:1#[ Also\ it can be
seen that the estimation of the coe.cient k0 is invariant
to the number of time measurements NT and to whether
the heater is on\ or on and o}[ However\ consistent with
the results of Table 2\ it can be seen from Table 3 that
the estimation of the coe.cients xs

0 and k1 is improved
when temperature measurements in time are recorded
when the heater is both on and o} in comparison with
the case when measurements are taken only when the
heater is on[

Overall from Tables 0Ð3 it can be concluded that for
the single discontinuity case investigated in this section\
in general\ Nw � 1 interior space measurements located
on each side of the discontinuity need to be imposed for
an accurate and stable estimation of the unknowns xs

0\ k0

and k1\ when the number of time measurements is limited
to NT � 2[ On the other hand\ if the number of sensors
Nw is limited to one\ then further improvement in retriev!
ing the unknowns may be achieved by increasing the
number of time measurements to about NT $ "6\ 7# and
also by recording temperature data when the heater is
both on and o}[ This improvement is more enhanced
when the single sensor is located at the left!hand side of
the discontinuity in the region where the thermal!contact
boundary condition "4# is applied[
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Table 2
The retrieval of a piecewise homogeneous thermal conductivity and its discontinuity location for exact\ i[e[ p � 9\ and p � 0 noisy data
when l1 � 0 and NT $ "2\ 3\ 4\ 5\ 6\ 7# and the heater is on and on and o}

Noise p � 9 p � 0 p � 9 p � 0 p � 9 p � 0
BEM xs

0 xs
0 k0 k0 k1 k1

Exact 9[551 9[551 3[089 3[089 1[984 1[984
NT � 2 "on# 9[484 9[573 3[080 3[170 1[112 1[901

"on and o}# 9[521 9[515 3[089 3[170 1[042 1[025
NT � 3 "on# 9[583 9[576 3[078 3[170 1[919 1[994

"on and o}# 9[529 9[513 3[089 3[170 1[045 1[039
NT � 4 "on# 9[585 9[578 3[078 3[170 1[903 1[999

"on and o}# 9[529 9[513 3[089 3[170 1[044 1[027
NT � 5 "on# 9[581 9[576 3[078 3[170 1[912 1[994

"on and o}# 9[522 9[516 3[089 3[170 1[049 1[022
NT � 6 "on# 9[582 9[585 3[078 3[170 1[911 0[874

"on and o}# 9[526 9[521 3[089 3[170 1[031 1[013
NT � 7 "on# 9[588 9[692 3[078 3[170 1[998 0[858

"on and o}# 9[531 9[527 3[089 3[170 1[020 1[000

Table 3
The retrieval of a piecewise homogeneous thermal conductivity and its discontinuity location for exact\ i[e[ p � 9\ and p � 0 noisy data
when l2 � 0 and NT $ "2\ 3\ 4\ 5\ 6\ 7# and the heater is on and on and o}

Noise p � 9 p � 0 p � 9 p � 0 p � 9 p � 0
BEM xs

0 xs
0 k0 k0 k1 k1

Exact 9[551 9[551 3[089 3[089 1[984 1[984
NT � 2 "on# 9[469 9[465 3[703 3[658 1[922 1[998

"on and o}# 9[465 9[466 3[608 3[607 1[933 1[911
NT � 3 "on# 9[452 9[454 3[607 3[607 0[862 0[833

"on and o}# 9[463 9[465 3[608 3[607 1[939 1[907
NT � 4 "on# 9[454 9[450 3[607 3[607 0[870 0[823

"on and o}# 9[463 9[464 3[607 3[607 1[939 1[907
NT � 5 "on# 9[445 9[446 3[607 3[607 0[837 0[812

"on and o}# 9[460 9[466 3[607 3[607 1[924 1[913
NT � 6 "on# 9[442 9[442 3[607 3[607 0[831 0[898

"on and o}# 9[467 9[472 3[607 3[607 1[942 1[930
NT � 7 "on# 9[436 9[437 3[607 3[607 0[812 0[785

"on and o}# 9[471 9[477 3[607 3[607 1[953 1[943

Furthermore\ some preliminary studies on heat con!
ductors presenting multiple faults\ i[e[ Ns × 1\ indicate
that\ in general\ Nw $ ""Ns−0#\ Ns# interior temperature
measurements recorded at NT −"1Ns−0# instants need
to be inverted in order to ensure an identi_able and good
retrieval of the piecewise homogeneous thermal con!
ductivity and its discontinuity points for a sample sub!
jected to the heat ~ow test investigated in this study[
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